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13 Abstract 

14 Understanding drivers of fish maturity are essential to predict the productivity, stability, and 

15 resiliency of exploited populations. In terms of horse mackerel (Trachurus trachurus) , in the 

16 eastern Atlantic Ocean and the Mediterranean Sea, size at maturity estimates date back to the 

17 1940s and throughout its range. However, many older estimates may not reflect current maturity 

18 rates. This is because past methods were imprecise, or environmental or fishing effects may 

19 change maturity rates, and some stock areas have been overlooked. To address this data gap for 

20 the Central Mediterranean Sea, female horse mackerel size at maturity was estimated for two 

21 areas: the Strait of Sicily and the Tyrrhenian Sea. All ovaries were assigned a reproductive phase 

22 based on macroscopic methods, and the reliability of this method (94%) was validated with a 

23 microscopic method (i.e., gonad histology). Although the collected females exhibited similar 
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24 condition, in terms of total body weight at a given length, as well as similar gonad-somatic 

25 indices, the size at median maturity in the Strait of Sicily was smaller (161 mm total length [TL]) 

26 than in the Tyrrhenian Sea (176 mm TL). Future sampling in a series of years with contrasting 

27 levels of productivity may help identify whether this is a broad latitudinal trend, or due to 

28 specific oceanographic drivers, such as estuarine outflow into the Tyrrhenian Sea or upwelling in 

29 the Strait of Sicily. Meanwhile, resource assessments should consider that these two areas 

30 represent two phenotypic stocks. 
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37 1. Introduction 

38 Small pelagic fishes comprise about one quarter of the global catch of fishes, and as such are 

39 economically and ecologically important at an international scale (Lleonart and Maynou, 2003; 

40 Checkley et al., 2009; Vázquez-Rowe et al., 2010). Despite their importance, the life history of 

41 most of these species is poorly known, and their highly variable recruitment complicates 

42 standard stock assessment models (Abaunza et al., 2003a; Barange et al., 2009). Therefore, new 

43 or improved estimates of model parameters should assist with sustainable management of living 

44 marine resources in both data-poor and data-rich situations. In the North Sea and north-eastern 

45 Atlantic, stocks of horse mackerel (Trachurus trachurus) have been defined for management and 

46 assessment purposes by the International Council for the Exploration of the Sea (ICES) since late 

47 1970s (e.g., ICES, 1999, 2017). In contrast, this species has received little attention regarding 

48 sustainable exploitation and monitoring plans in the Mediterranean Sea, despite their ecological 

49 importance (Abaunza et al., 2003b; Rumolo et al., 2017). According to recommendations by the 

50 European Union (STECF, 2010) and the General Fisheries Commission for the Mediterranean 

51 (FAO-GFCM), management plans should follow an eco-systemic and multispecies approach, i.e. 

52 at pelagic ecosystem level (FAO, 2008; Fogarty, 2013). Therefore, many species, usually not 

53 includes in the management plans, are receiving renewed interest by the scientific community. 

54 Life history parameters, and particularly reproductive traits, are the basis for assessing 

55 population productivity and resilience, making them basic inputs into a stock assessment, e.g. 

56 maturity data to define the size of the mature biomass in a population. 

57 Horse mackerel (HOM) is a pelagic fish with a broad latitudinal distribution in the northeast 

58 Atlantic Ocean (from the West African Cape Verde Islands to Norwegian Sea and North Sea), as 

59 well as in the Mediterranean and Black Seas (Abaunza et al., 2003b). It is a zooplanktivorous 
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60 (Rumolo et al., 2017), schooling species usually inhabiting the continental shelf (Iglesias et al., 

61 2003; D’Elia et al., 2014). HOM is often caught close to the sea floor using pelagic trawls and 

62 purse seines (Abaunza et al., 2003a). Several overviews of HOM biology and ecology and a 

63 series of fishery assessments using age-structured models suggest this is a fairly data-rich species 

64 (e.g., Abaunza et al., 2003a, b, 2008; Gordo et al., 2008; ICES, 2017). 

65 The spawning period of HOM displays high variability in both range and peak relative to the 

66 latitude, but in general, it is protracted (up to 8 months), usually with a peak in spring, in both the 

67 Atlantic Ocean and Mediterranean Sea (Abuanza et al., 2003a). Other reproductive traits 

68 demonstrate a possible latitudinal cline in the eastern Atlantic (Abaunza et al., 2003b, 2008) 

69 including the size at maturity (Abaunza et al., 1995; and reference therein). The estimate and 

70 variability of the length at which fishes reach sexual maturity is of particular interest, given its 

71 importance in stock assessment. There are over twenty maturity ogive estimates, particularly for 

72 females (Abaunza et al., 2003b [and references therein], 2008; Carbonara et al., 2012; see 

73 Supplementary Material [Table S3] for more details). However, most of these are quite old (> 20 

74 years), and older parameters may no longer be appropriate given the likelihood that life history 

75 traits may be adaptive and change in response to changing environmental conditions (Gordo et 

76 al., 2008; McBride et al., 2013; Ganias et al., 2015). Moreover, HOM is characterized by great 

77 plasticity in the growth (Abaunza et al., 2003b), and size reached may vary among populations or 

78 over time for a given population (Brander, 1995). Variation in maturity-at-size and –at-age has 

79 direct implication of productivity fluctuation in many populations, with implications for fisheries 

80 management (Morgan, 2018). As a likely income breeder, size-a-maturity of HOM may vary on 

81 short time scales, perhaps by year-class (McBride et al., 2015). Older parameters may have also 

82 been measured using simpler, and less precise, methods. Many maturity schemes and methods 
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83 have been used (Abaunza et al., 2003b), and few early efforts validated the maturity evaluations 

84 using gonad histology, now accepted as the best practice (Ferreri et al., 2009; Costa, 2009; 

85 Khoufi et al., 2014). In multiple-spawning fishes, specifically those with asynchronous ovary 

86 development such as the HOM, macroscopic determination of spawning phase is difficult 

87 without the support of microscopic examination, because of its subjectivity and variability. 

88 Nonetheless, macroscopic evaluation of gonads may still play a key role in the assessment of 

89 fishery resources if calibrated to the more precise measures from histological preparations of 

90 gonads, and training of sea-going technicians, because of the low cost of macroscopic methods 

91 can lead to high sample sizes (Ferreri et al., 2009). Obtaining a full size range of immature and 

92 mature sizes or ages can also be an obstacle, particularly for small fishes that may recruit to a 

93 fishery at about the same size or larger than maturity, an increasingly common situation as 

94 smaller, pre-spawning fishes are protected from harvest. A recent effort to collect synoptic data 

95 for HOM at 21 locations across a seascape level led to few immature individuals, particularly 

96 females (Abaunza et al., 2008). 

97 Thus, there are several stocks of HOM in the eastern Atlantic, including the Mediterranean 

98 Sea, but associating the variability in maturity schedules among these stocks and sub-regional 

99 habitat productivity has been obscured by the imprecision of older methods, the difficulty in 

100 obtaining adequate samples for maturity classification, and the potential that size-at-maturity 

101 may change over time. The present study addresses the first two challenges: the frst with a 

102 validation study of maturity assignments data based on naked eye evaluation, referenced to 

103 microscopic examination of ovarian histological slides; and the second, by sampling in multiple 

104 years and including a stratified-random sampling to target the small, immature fish necessary to 

105 fit a model to the data. These data are then used to estimate and evaluate differences in the size-
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106 at-first maturity for HOM females between two areas of the central Mediterranean – the Strait of 

107 Sicily (SS) and the Tyrrhenian Sea (TY) – that heretofore have not been investigated. 

108 2. Materials and Methods 

109 2.1 Field methods 

110 HOMs were collected during three consecutive years (2012 to 2014) and later in 2016 during 

111 May-August in two study areas (Table 1, Fig. 1). The months of sampling overlapped with the 

112 latter part of the spawning season in the eastern Mediterranean (Karlou-Riga and Economidis, 

113 1996), which enhanced our ability to distinguish immature from mature but resting fish. The two 

114 sampling areas, both in the central Mediterranean Sea, were the Strait of Sicily (SS; 

115 Geographical Sub-Areas [GSA] 16 and GSA 15, as defined by General Fisheries Commission 

116 for the Mediterranean; GFCM, 2009) and the west Tyrrhenian Sea (TY), starting from the North 

117 of Sicily to Ligurian coast (GSA 9 and GSA 10; GFCM, 2009). 

118 Sampling took place within the framework of combined Daily Egg Production Method 

119 (Parker, 1980) and echo-acoustic surveys aimed to evaluate abundance and distribution of small 

120 pelagic fish species, particularly Engraulis encrasicolus and Sardina pilchardus (Bonanno et al., 

121 2014a, 2016; Barra et al., 2015; Basilone et al., 2017). Catches were taken from the research 

122 vessel “G. Dallaporta” by means of an experimental mid-water pelagic trawl (vertical opening of 

123 8 m, cod-end mesh size of 18 mm), operating at 4.0 knots. The trawl is equipped with a 

124 monitoring system (Simrad ITI), for observing net position along the water column, vertical and 

125 horizontal mouth opening, and for testing the catch efficiency, during the whole sampling. 

126 HOMs were collected with a simple random approach in the years 2012-2014, but when it 

127 was apparent the too few small individuals were being collected, in 2016, they were collected 

128 with a stratified-random approach (3 random fish per 1 cm stratified-length bins, for each 
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129 sampling area). Individuals were measured on board for total length (TL; ± 1 mm), and total 

130 (TW) and somatic weight (SW) (± 0.01g), using a stable marine scale (0.01g). Individuals were 

131 dissected and the gonads were extracted, sexed and staged according to macroscopic features; the 

132 ovaries were preserved in buffered formalin (4%). Collected males were classified maturity by 

133 macroscopic characters (ICES, 2008a). However, the data were not validation by gonad 

134 histology, nor were gonad weights collected in a manner to corroborate the male maturity data 

135 (Supplementary Material). For this reason, all analyses were carried out considering only HOM 

136 females. In addition, the maternal condition appears more significant to investigate the 

137 reproductive potential (Marshall et al., 2000). 

138 2.2 Reproductive phase evaluation 

139 Macroscopic evaluation of the gonad was carried out at sea on freshly caught individuals. 

140 Although several classification schemes have been used in the past (Abaunza et al., 2003b; and 

141 references therein), the macroscopic assignment of reproductive phase was carried out directly 

142 on board according to the ovary features according to a six-class scale developed for E. 

143 encrasicolus (Ferreri et al., 2009). This scheme appeared suitable because both species showed 

144 gonochorism, asynchronous gonad development and indeterminate fecundity (Ferreri et al., 

145 2016; Ganias et al., 2017). Briefly, the six macroscopic phases have been named: 1) immature; 

146 2) early developing; 3) imminent spawning; 4) spawning; 5) partial post-spawning; 6) spent. 

147 Phases 1-2 were considered immature (spawning not imminent this season) and phases 3-6 were 

148 considered mature (they have contributed or are contributing to the reproduction this season). 

149 Microscopic evaluation was carried out using gonad histology at the CNR-IAS laboratory. 

150 Ovaries were dried of surface moisture and weighed (OW; ± 0.001 g). A small part of ovarian 

151 tissue was dehydrated in ethyl alcohol, cleared in xylol, and embedded in paraffin. Sections (4 

7 



 

 

             

               

                

              

              

                

             

                  

             

                 

                

               

               

                 

                

                

               

              

           

    

            

           

    

152 μm) were stained with Haematoxylin and counter-stained with Eosin (Hunter and Macewicz, 

153 1985). Microscopic examination was used to identify the maturity stage of the most advanced 

154 group of oocytes and the presence of postovulatory follicles (POFs; Fig. 2). The earliest oocyte 

155 stage recorded was perinucleolar (PE) (Fig. 2a). A subsequent secondary growth oocyte stage 

156 was more developed, with cortical alveoli (AC), particularly located along the cellular membrane 

157 (Fig. 2b). The presence of cortical alveoli as the most-advanced oocyte stage was not deemed 

158 sufficient for imminent spawning in these samples, considered early developing by others 

159 (Brown-Peterson et al., 2011), but evaluated here as not likely to spawn in the current year (i.e., 

160 hormonally active but functionally immature). The spawning capable phase was characterized by 

161 vitellogenic stages, an early stage where the yolk partially filled the cytoplasm (V1) and a later 

162 stage where the yolk completely filled the cytoplasm (V2) (Fig. 2c). The final maturity stages 

163 were represented by oocytes in nucleus migration (NM) and, subsequently, hydrated (H) (Figs 2d 

164 and 2e). Oocyte development stages were used to classify six reproductive phases, according to 

165 Ferreri et al. (2009). Briefly, the six microscopic phases are: 1) immature, with only PE oocytes; 

166 2) early developing, with some presence of oocyte with CA; 3) imminent spawning, with mature 

167 oocytes (V1 and V2); 4) spawning, with oocytes in NM or hydrated; 5) partial post-spawning, 

168 with evidence of occurred spawning (i.e., POFs at any reabsorption stage); 6) spent, with 

169 immature oocytes, old POFs and different stage of atresia. Phases defined by microscopic 

170 characters were designed to match phases defined by macroscopic characters. 

171 2.3 Data analysis 

172 Gonad development and condition were evaluated to evaluate possible differences among 

173 different sampling areas. The gonad-somatic index (GSI) was estimated as: 

174 GSI = OW/SW*100, 
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175 where, OW = ovarian weight, and SW = somatic weight, both in g. 

176 Differences in GSI between adjacent GSAs (i.e., between GSAs 9 and 10, and between GSAs 

177 15 and 16) were assessed using the Mann-Whitney U test and were not statistically significant (P 

178 > 0.1). Consequently, samples from adjacent GSAs were pooled for the subsequent analyses, to 

179 increase the size of the dataset for each area and to compare only two study areas (TY and SS). 

180 The length–weight relationship of HOM was obtained for SS and TY separately, as a 

181 measure of condition, using the equation: 

182 TW = a*TLb , 

183 where, TW = total weight (g), TL = total length (mm), a = intercept, and b = slope. 

184 Since the TY region had several very large fish, much larger than SS, the analysis of the 

185 length-weight distribution in the two study areas were made on a subset of the data truncated at 

186 fish less than 280 mm TL for TY. This ensured that the large HOMs from Tyrrhenian Sea were 

187 not on some non-linear trend from the smaller ones, which would bias the comparisons between 

188 regions. A general linear model (GLM) was applied to test for differences on fish length, 

189 geographic area, and interaction between each, using the log-transformed data (logTW and 

190 logTL, respectively). The test was performed by R (vers. 3.3.0 [R Core Team, 2016]). 

191 Validation of reproductive phase, as determined by macroscopic assignment, was evaluated 

192 by comparing to paired, independently-determined microscopic assignments for a subset of 

193 female HOMs (n = 201). These phases were compared directly in a two-way table and the 

194 potential bias in disagreements was evaluated by a Bowker’s Test of Symmetry based on an α-

195 value of 0.05 (Bowker, 1948; McBride, 2015). Phase-specific GSIs were also plotted to evaluate 

196 reproductive performance by sampling date and in each study area. 

197 Size at maturity was predicted using the logistic model: 
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198 –(α + β x,))-1 Pi = (1 + e , 

199 where, Pi is the probability of being mature at size xi, and α and β are model parameters 

200 representing the intercept and slope of a linear form of this model. In R, this model was fitted 

201 using a binary logistic link function of generalized linear models (R, vers. 3.3.0 [R Core Team, 

202 2016]). Macroscopic maturity phases 1-2 were considered immature, and phases 3-6 were 

203 considered mature. Area-specific maturity ogives are presented with 95% confidence intervals 

204 determined by bootstrapping 1,000 times. An information-theoretic approach was used to select 

205 among full (female size, sampling area [factor], and an interaction of both) and reduced models; 

206 the second-order Akaike’s information criterion (AICc) was used to account for sample sizes in 

207 all comparisons. 

208 

209 3. Results 

210 Female HOM collected in the SS were smaller than in the TY in both length (mean TLSS = 

211 190 mm; mean TLTY = 195.32 mm; Table 1 and Supplementary Material [Tables S2]) and 

212 weight (mean TWSS = 58.89 g; mean TWTY = 68.84 g; Table 1). The length-weight relationship 

213 was plotted for each area separately (Fig. 3); GLM showed the differences were not significant 

214 (p > 0.05) for neither length, weight, nor weight at a given length between SS and TY. 

215 Reproductive phases agreed well between macro- and microscopic methods. Among 

216 immature phases, macroscopic examination tended to be biased towards phase 2, while among 

217 mature phases, macroscopic method had difficulty identifying phases 5 and 6 (Table 2). 

218 However, the analysis by naked eye correctly recognized females as either immature or mature 

219 most of the time (189/201 = 94%; Table 2). Bowker’s test of symmetry found no bias in the 

220 disagreements between the two methods when assigning ovary to either immature or mature 
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221 phases (χ2 = 0.33, df = 1, p = 0.56). Given these results, the remaining analyses were performed 

222 using data by macroscopic method, to extend the observations to a wide amount of fishes (294 

223 individuals), for which only macroscopic data were available. 

224 All reproductive phases were commonly observed in both areas, except for the spent phase, 

225 which indicated the May-August sampling occurred throughout an active spawning period (Fig. 

226 4). Phase-specific values of GSI were overlapping between areas, indicating similar trends in 

227 GSI evolution. As expected, the GSI increased from immature (phases 1 and 2) to mature 

228 individuals (from phase 3 onwards), reaching the highest values in hydrated females (phase 4). 

229 Similar values were recorded for phases 3 and 5, explained by the prevalence of vitellogenic 

230 oocytes (V1 and V2) as the most abundant cellular stage in ovaries of these two phases. 

231 Logistic modelling relating total length and proportion of mature fishes suggested two 

232 differences between the two considered areas (Fig. 5). First, the median size at maturity, L50, was 

233 smaller for females collected in the SS (161 mm; 95% CI: 153 - 169) than in the TY (176 mm; 

234 95% CI: 171 - 181). Second, the shape of the ogive was more knife edged for the SS. For 

235 example, in terms of an odds ratio, SS females were half as likely to be mature at 100 mm TL, 

236 but twice as likely by 175 mm TL, and 9 times as likely by 250 mm TL, compared to the TY 

237 (Table 3). The full model – accounting for sampling area, fish size, and their interaction – was 

238 indistinguishable from the reduced model without the interaction terms (ΔAICc = < 1), but both 

239 were best models compared to the fully reduced model with only TL as a predictor (ΔAICc ≈ 6). 

240 Thus, area was an important proxy, indicating that HOM mature at a smaller median size and a 

241 narrower range of lengths in the Strait of Sicily compared to the Tyrrhenian Sea. 
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242 4. Discussion 

243 This study reports not only a new maturity schedule for female HOM in the central 

244 Mediterranean Sea, where sampling had been lacking, but local variation between two maturity 

245 traits estimated from the Strait of Sicily and the Tyrrhenian Sea. This difference in maturity 

246 schedules was evident without differences in weight-at-length between regions, or in terms of the 

247 evolution of GSIs in relation to macroscopic phase or sampling date. Maturation occurred over a 

248 narrower size range and at a smaller L50 in the SS, which likely reflects the differences in habitat 

249 conditions between the two areas such as in primary production or temperature (Bonanno et al., 

250 2016; Basilone et al., 2017), and represents reproductive (phenotypic) stock structure in this 

251 region of the Mediterranean Sea (McBride, 2014). 

252 In both areas, the higher GSI values in mature individuals (phases 3, 4 and 5) confirm the 

253 spawning activity indicated by an increasing energy investment in the egg production. Similar 

254 conditions of females, highlighted by overlapped GSI values from SS and TY, agree with 

255 evidence found for other partial spawner species in Catalan Sea and the northern Tyrrhenian Sea 

256 in which, under normal environmental condition, the gonads have a similar development trend, 

257 although individuals inhabit regions with different features (i.e. Merluccius merluccius, Recasens 

258 et al., 2008). 

259 Fish maturity, among other life history traits, is likely a reflection of the environmental 

260 productivity in each region (McBride et al., 2015). Future monitoring may uncouple possible 

261 hydrodynamic effects from a more general latitude effect, by sampling female HOM maturity in 

262 contrasting years of river flows, which would affect TY productivity (Bonanno et al., 2016), 

263 versus contrasting years of upwelling, which would affect SS productivity (Bonanno et al., 

264 2014b). Generally, fishes of a particular species in low latitudes grow at a faster rate and mature 
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265 earlier than those of the same species in high latitudes (Laevastu and Favorite, 1988) and these 

266 differences are attributable to the ability to adapt to large-scale patterns in environmental 

267 conditions (Beverton, 1992 Winton et al., 2014). However, the effects on reproductive behaviour 

268 and traits arising from broad latitude differences versus those due to meso- or micro-habitat 

269 variability require more attention than planned into the sampling design here (Recasens et al., 

270 1998; Domínguez-Petit and Saborido-Rey, 2010). For instance, variations in reproductive traits 

271 in other small pelagic fishes vary between years by environmental factors, specifically species 

272 with indeterminate fecundity, e.g. Engraulis mordax (Hunter and Leong, 1981) and E. 

273 encrasicolus (Somarakis et al., 2004; Basilone et al., 2006). 

274 Although the presence of a possible latitudinal effect in the Mediterranean Sea on 

275 reproductive traits seems not to have been investigated until now, differences in productivity 

276 were observed between the Eastern and Western parts of the basin (Karlou-Riga and Sinis 1997; 

277 Abaunza et al., 2008). Elsewhere (e.g., in the case of Agulhas Bank, South Africa), differences in 

278 L50 have been attributed to differences in the interpretation of maturity scale or a change in the 

279 biological characteristics of the population over time (Hecht, 1990). The lengths at maturity 

280 recorded for HOM during the present study (both areas) are lower than the L50 estimated in other 

281 central Mediterranean areas, Adriatic and Ionian Sea (Carbonara et al., 2012; see Supplementary 

282 Material [Table S3] for more details). Otherwise, the HOM in the northeast Atlantic showed 

283 increasing L50 with latitude, mainly explainable by differences in water temperature (Abaunza et 

284 al., 1995). Present L50 values are comparable with other estimates for the Mediterranean Sea, 

285 using both macro- and microscopic evaluation of gonads (Abaunza et al., 2003b [and reference 

286 therein], 2008; Carbonara et al., 2012; see Supplementary Material [Table S3] for more details). 

287 The only published reference for the TY reported a higher value, L50 = 190 mm, relative to our 
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288 estimate of 176 mm TL. However, this previous value was estimated from macroscopic analysis 

289 without histological validation (Carbonara et al., 2012; see Supplementary Material [Table S3] 

290 for more details). No previous estimate had been reported for the SS. 

291 Future monitoring of HOM appears warranted to investigate a working hypothesis about 

292 phenotypic stock structure in this part of the Mediterranean Sea, and the results presented here 

293 will guide best practices for allocating sampling effort. In particular, total lengths of HOMs 

294 sampled in both study areas ranged from 69 to 445 mm, but the functional lower limit was 121 

295 mm when restricted to individuals for which gonad development is already in progress (sex is 

296 identifiable). This range is comparable with length range of HOMs caught by other fishing gears 

297 and in other coastal Mediterranean waters, such as the Turkish Sea (100 to 189 mm fork length; 

298 Erdo an et al., 2016) and the Adriatic Sea (60 to 390 mm fork length; Jukić and Piccinetti, 1981; 

299 Alegría-Hernández , 1984). Future sampling will require extra effort to sample from the lower 

300 size range to conform to best practices that the samples used for the ogive evaluation are 

301 representative and cover the whole length range of the population (ICES, 2008b). Moreover, the 

302 presence of actively spawning females in our samples, including HOM with hydrated ovaries, 

303 met the general recommendation to use data collected during the spawning period for estimating 

304 the length at maturity (ICES, 2008b). 

305 The macroscopic recognition of reproductive phase by visual examination of gonads is a 

306 rapid and inexpensive method for determining the reproductive status in fishes, even though the 

307 subjective judgment intrinsic of such method may reduce the data accuracy (Ferreri et al., 2009; 

308 Khoufi et al., 2014; Fogg et al., 2017). Nevertheless, a higher level of accuracy may be achieved, 

309 if a representative dataset is validated using histological examinations. Generally, macroscopic 

310 analysis is not satisfactory for distinguishing between immature, maturing and resting females 
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311 (Recasens et al., 2008; Costa, 2009; Ferreri et al., 2009). The literature is replete with examples 

312 of the difficultly in distinguishing between immature (phase I) and spent (phase VI, non-active 

313 but mature), because in both cases the ovaries are very small, without visible oocytes (Costa, 

314 2009; Ferreri et al., 2009). Such misclassification erroneously affects estimation of the mature 

315 proportion of the stock, because resting females macroscopically considered as immature have 

316 already contributed to the spawning biomass of that year. During the present study, a good 

317 correspondence of immature females between macroscopic and histological reproductive phase 

318 identifications was observed. Nevertheless very few HOMs in phase VI have been sampled. 

319 Such good agreement appeared in contrast to the results obtained for HOM along the Portuguese 

320 coast (Costa, 2009) or other partial spawner fish species, like Pterois volitans (Fogg et al., 2017). 

321 Otherwise, present observations are in agreement with results obtained for Merluccius 

322 merluccius, which showed a good correspondence of immature females between macroscopic 

323 and histological reproductive phase identification (Khoufi et al., 2014). 

324 Variations in maturation, growth, condition, and spawning stock biomass directly influence 

325 population productivity, highlighting the need to consider varying productivity into the stock 

326 assessment (Morgan, 2018). As recommended by the European Commission for Fisheries, the 

327 biological parameters involved in stock assessment models (i.e., mortality, growth and maturity 

328 ogive) should have reference points for each stock in each area monitored or needing to be 

329 monitored (STECF, 2010, 2016). The results herein are a substantial step forward, by defining 

330 the suitability of the macroscopic maturity evaluation and estimating L50 in two subregions of the 

331 central Mediterranean Sea. The resulting information improves the accuracy and precision of 

332 data available for management of HOM in two areas where until now no reference points were 

333 available. Future work should build on these best practices to investigate whether reproductive 
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334 traits of HOM populations change among adjacent GSAs of central Mediterranean Sea, in 

335 response to identifiable environmental signals known to differ between the two subregions. 

336 
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529 Table 

530 Table 1: Year and sampling month; Number of HOM (No. of samples) and number of females (No. of females) collected per each study year; 

531 minimum and maximum total length (TL); minimum and maximum total weight (TW); minimum and maximum of gonad weight (GW). All the 

532 data are presented for the two study areas, the Strait of Sicily (SS) and the Tyrrhenian Sea (TY). 

533 

Year Sampling 

month 

No. of 

samples 

SS 

No. of 

females 

TL 

(mm) 

TW (g) GW (g) 

Sampling 

month 

No. of 

samples 

TY 

No. of 

females 

TL 

(mm) 

TW (g) GW (g) 

69- 2.92 – 0.19 – 92 – 5.72 – 0.10-

2012 June-July 112 34 

262 

124 – 

131.75 

15.85 – 

9.44 

0.63 – 

July 105 42 

435 

122-

562 

16.27-

5.21 

0.02-

2013 June 158 30 

250 

142 – 

138.45 

20.36 -

4.62 

1.09 – 

May – June 229 79 

346 

117-

333 

12.71-

23.28 

0.05-

2014 July 36 11 

287 

104 – 

177 

9.62 – 

14.19 

0.02 – 

June 182 49 

394 

144-

500 

24.17-

8.66 

0.05-

2016 July 42 14 

268 126.9 4.68 

July-August 150 61 

445 573 14.95 
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  Micro  

  1   2 3  4  5   6 

 1 19   2 2   -  - - 

 2 47   3 2  - -  3 

 3 3   2  74 3  10   4 

Macro  

 4 - - 6   11 4  - 

 5 - - 2  3  1  - 

 6 - - - - - - 

  

   

534 

535 

536 

537 

538 

Table  2.  Comparison  of  reproductive  phase  recognition  by  two  methods,  microscopic  (Micro;  by  

histology)  versus  macroscopic  (Macro),  for  201  female  horse  mackerel.  Data  from  both  study  areas,  

Strait  of  Sicily  and  Tyrrhenian  Sea,  were  combined.  Reproductive  phases  1-2  are  immature,  3-6  are  

mature; agreements for immature or  mature classifications  for individual  fish are in  bold.  

539 

540 

541 
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  SS  TY  SS/TY 

 TL Pmat  Oddmat  Pmat  Oddmat    Odds Ratio 

 100  0.045  0.047  0.091  0.100  0.472 

 125  0.143  0.167  0.176  0.214  0.779 

 150  0.369  0.586  0.313  0.456  1.284 

 175  0.673  2.060  0.493  0.973  2.117 

 200  0.879  7.243  0.675  2.075  3.490 

 225  0.962  25.470  0.816  4.426  5.755 

 250  0.989  89.568  0.904  9.440  9.488 

 547 

542 Table 3. Tabulation of proportion mature (Pmat), odds of being mature (Pmat/Pimmature) at a given fish size 

543 for each sampling area, and the odds ratio of being mature in the Strait of Sicily (SS) versus the 

544 Tyrrhenian Sea (TY). Estimated parameters used here to calculate Pmat were α = -8.08 + 2.80 (estimate + 

545 standard error) and β = 0.0503 + 0.0156 for the SS, and α = - 5.33 + 0.982 and β = 0.0303 + 0.00533 for 

546 the TY (see methods for full logistic equation). 
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548 Figures captions 

549 Fig. 1 Locations of fish trawls collecting female horse mackerels in the two study areas, Strait of Sicily 

550 (triangles) and Tyrrhenian Sea (circles) during four summer surveys (2012 to 2014 and 2016). 

551 

552 Fig. 2 Histological sections of oocytes stages in horse mackerel females: a) PE = perinucleolar oocyte 

553 stage; b) CA = cortical alveoli; c) V1 = partially vitellogenic oocytes and V2 = fully vitellogenic oocytes; d) 

554 NM = nucleus migration; e) H = hydrated oocytes; f) POF = post-ovulatory follicles. 

555 

556 Fig. 3 Length (log Total Length) – weight (log [Total] Weight) relationship for horse mackerel females (< 

557 280 mm TL) for two study areas, Strait of Sicily (SS) and Tyrrhenian Sea (TY). 

558 

559 Fig. 4 Gonad-somatic index (GSI) of female horse mackerel by reproductive phase (1-6; macroscopic 

560 evaluation; top panel) and by sampling date (day of year; i.e., 152 = June 1; bottom panel). Data for 

561 individual fish are presented separately for two study areas, Strait of Sicily (SS) and Tyrrhenian Sea (TY; 

562 symbols by regions are staggered to be non-overlapping). 

563 Fig. 5 Maturity ogives for female horse mackerel in two study areas, Strait of Sicily and Tyrrhenian Sea. 

564 The solid black line is the predicted proportions of mature females at length, the dashed blue lines are 

565 the 95% confidence limits, and the tick marks on the bottom and top axes indicate fish size data for 

566 immature and mature fish, respectively. Point estimates for mean size (+ 95% c.l.) are estimated for 5% 

567 (L5), 50% (L50), and 95% (L95) mature females. See Table 3 for more details about the logistic equation 

568 parameters for each area and odds ratios of being mature at a given size. 

569 
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